RF Logic Limited.

Unit 18, The Enterprise Centre,
Coxbridge Business Park, FARNHAM, Surrey GU10 5EH
Tel +44 (0)1252 268340
Email: sales@rflogic.co.uk
web: www.rflogic.co.uk

Electronic Product Design

Automatic Modulation Meter Model RF257 Operator Manual

Model RF257 Automatic Modulation Meter

The model RF257 modulation meter has been designed to simplify the task of modulation measurement. The model RF257 always locks to the highest level signal available, ignoring spurious signals and harmonics. AM and FM measurements can be made over the full frequency range of 1.5 MHz to 2.0 GHz . The unit operates usefully with reduced sensitivity to at least 4 GHz .

FM measurement of peak positive, peak negative or mean deviation, with 5 deviation ranges from 1 kHz to 100 kHz full scale. AM measurement of peak, trough or mean in percentage modulation with 5 ranges from 1% to 100% full scale. The audio measurement bandwidth is selectable and the demodulated audio is available at the front panel. The IF is available on a BNC connector on the rear panel.

The unit is small and lightweight, making it ideal for the bench or field work, especially with the internal battery option installed.

Operating Instructions

Power Requirements.

AC MAINS OPERATION

WARNING
INCORRECT SUPPLY RANGE SELECTION COULD
CAUSE SERIOUS DAMAGE TO THE INSTRUMENT

Two AC power ranges are available, 102V-130V and 205V-260V. Make sure any mains connection is removed from the unit. Remove the four bottom case screws and remove cover. Select the appropriate range on the mains selector switch. This is located adjacent to the mains transformer on the bottom PCB inside the instrument and is identified as W1. Replace bottom cove and screws.

Connect the power lead to the local AC supply socket. The instrument is switched on by switching the front panel rotary switch to 'ON'. The instrument is immediately ready for use; no warm-up time is required. At power on, the RF 257 defaults to the FM 100 kHz range with the mean detector and the 3.5 kHz filter selected.

Input Signal.

Connect the signal source to the 'INPUT' socket, the 'LOCK' LED should immediately illuminate if the signal is within the range 2 mV to 1 V . The 'LOCK' LED shows that the instrument is correctly tuned to the incoming signal. The measuring circuits are inhibited when the 'LOCK' indicator is not lit. DO NOT APPLY MORE THAN 1 V (2.8 V pp), the input circuitry will be damaged.

The instrument locks to the highest level signal applied to the input. It will not lock to a harmonic or other spurious signal provided that the intended carrier has the highest level signal and that it is within the specified frequency range. The tuning mechanism provides a continuous dynamic frequency lock that permits accurate modulation measurements to be taken even on a slowly sweeping carrier.

In general, the instrument provides good selectivity against interference from spurious signals. However, the broadband nature of the input circuit implies that the possibility of such interference cannot be completely eliminated. If it is suspected that a reading is being affected by high level interfering signals, make a check by disconnecting and reconnecting the signal source several times; any change in the modulation reading implies interference. Normal harmonic levels, even in the worst case, are unlikely to have any effect on measurements.

FM Measurement.

Select the FM mode with the 'MODE FM' pushbutton.
Select the appropriate 'RANGE' with the < > pushbuttons. Five ranges are available with full scale deviations of $1,3,10,30$ and 100 kHz .

Select the required 'AF FILTER' with the < > pushbuttons. Five filter functions are available; three bandpass filters with nominal upper cut-off frequencies of $60 \mathrm{kHz}, 15 \mathrm{kHz}$ and 3.5 kHz ; a psophometric filter complying to the CCITT standard and a 750μ de-emphasis network.

Select the required 'DETECTOR' mode with the '+', 'MEAN' and '-' pushbuttons. '+' gives peak positive deviation, '-' gives peak negative deviation and 'MEAN' gives the average of peak positive and peak negative deviations.

AM Measurement.

Select the AM mode with the 'MODE AM pushbutton.
Select the appropriate 'RANGE' with the < > pushbuttons. Five ranges are available with full scale modulation percentages of $1 \%, 3 \%, 10 \%, 30 \%$ and 100.0%. The demodulator is highly linear and allows accurate AM readings up to 100%.

Select the required 'AF FILTER' with the < > pushbuttons. Five filter functions are available; three bandpass filters with nominal upper cut-off frequencies of $60 \mathrm{kHz}, 15 \mathrm{kHz}$ and 3.5 kHz ; a psophometric filter complying to the CCITT standard and a 750μ s de-emphasis network.

Select the required 'DETECTOR' with the '+', 'MEAN' or '-' pushbuttons. '+' gives peak percentage modulation, '-' gives trough percentage modulation and 'MEAN' gives the average between the peak and trough modulation.

Internal Battery Operation (Option 03).

To operate from the internal battery, switch the front panel rotary switch to 'Bat'. This will give at least 8 hours of continuous use from a fully charged battery. The battery state during mains or battery operation can be determined by pressing the 'Bat Chk' pushbutton. A reading between 8 and 10 on the scale is required for normal operation. To charge the battery, switch the front panel rotary switch to 'Chge'. Allow 14 hours for a complete charge. A yellow LED shows that the battery is on charge. During normal mains operation the battery is trickle charged.

Demodulated Audio Output.

The demodulated audio output is available on the front panel via a BNC connector. This is a 600Ω output impedance with a level of 0 dBm for FSD.

IF Output.

The IF output is available on the rear panel via a BNC connector. This approximately 420 kHz at a level of 100 mV with a nominal 50Ω output impedance.

RF257 SPECIFICATION

RF Input

Frequency Range	1.5 MHz to 2.0 GHz and a useful response, with reduced sensitivity, to at least 4GHz.
Impedance	50Ω nominal.
Level	2 mV to 1 V rms Full specification for noise, accuracy etc applies over the input range 10 mV to 1.0 V
Max Input	0.5 W continuous.
Tuning	Automatic tuning selects the largest available signal. Correct operation requires spurious signals to be $>10 \mathrm{~dB}$ below the wanted signal.
Acquisition	Typically $<100 \mathrm{~ms}$. Settling time for the AF circuits is additional and is typically 1 s for a reading $>75 \%$ of meter range.
L. O Feedout	-60dBm typically.
FM Measurement	
FSD Ranges	Five ranges with full scale deviations of $1 \mathrm{kHz}, 3 \mathrm{kHz}, 10 \mathrm{kHz}, 30 \mathrm{kHz}$ and 100 kHz .
Modes	Peak Positive, Peak Negative and Mean deviation.
Accuracy	$\pm 2 \%$ of Full scale $\pm 1 \%$ of reading with a 1 kHz tone. See audio filter specification for additional error due to AF response. Residual FM is additional.
Residual FM	$<20 \mathrm{~Hz}$ at 100 MHz $<100 \mathrm{~Hz}$ at 500 MHz $<200 \mathrm{~Hz}$ at 1000 MHz
	Measured with 3.5 kHz AF bandwidth.
Distortion	$<1 \%$ at 100 kHz deviation with a 1 kHz tone.
AM Measurement	
FSD Ranges	Five ranges with full scale indications of $1 \%, 3 \%, 10 \%, 30 \%, 100 \%$.
Modes	Peak, Trough and Mean of peak and trough.
Accuracy	$\pm 2 \%$ of Full scale $\pm 2 \%$ of reading with a 1 kHz tone. See audio filter specification for additional error due to AF response. Residual AM is additional.
Residual	AM $<0.5 \%$ (15 kHz bandwidth selected)
Distortion	$<1 \%$ for 80% AM with a 1 kHz tone.
Audio Filters	
60 kHz Filter	$\begin{aligned} & 250 \mathrm{~Hz}-60 \mathrm{kHz} \pm 0.5 \mathrm{~dB} \\ & 12 \mathrm{~Hz}-72 \mathrm{kHz} \pm 3 \mathrm{~dB} \text { typically. } \\ & \mathrm{HF} \text { roll off at } 80 \mathrm{~dB} / \text { decade. } \end{aligned}$
15kHz Filter	$\begin{aligned} & 250 \mathrm{~Hz}-15 \mathrm{kHz} \pm 0.5 \mathrm{~dB} \\ & 12 \mathrm{~Hz}-19.5 \mathrm{kHz} \pm 3 \mathrm{~dB} \text { typically. } \\ & \text { HF roll off at } 60 \mathrm{~dB} / \text { decade. } \end{aligned}$

3.5 kHz Filter	$250 \mathrm{~Hz}-3.5 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$
	$12 \mathrm{~Hz}-4.0 \mathrm{kHz} \pm 3 \mathrm{~dB}$ typically.
	HF roll off at $100 \mathrm{~dB} /$ decade.
Psophometric	Complies with CCITT Volume V P53
De-emphasis	750 es de-emphasis. 3 dB bandwidth typically $12 \mathrm{~Hz}-212 \mathrm{~Hz}$. \quadHF roll off at $12 \mathrm{~dB} /$ decade.

Front Panel

AF Output	Front panel BNC. Level OdBm approx. for FSD. Impedance 600Ω nominal.
Display Type Overload	Moving coil meter with 60 mm mirror scale. Rear Panel
Fully protected against over-ranging.	
IF Output	Rear panel BNC. Level $100 \mathrm{mV}, 50 \Omega$ nominal.
	Frequency is approximately 420 kHz.

Power Requirements

AC Line	Internal selection of line voltage
115 V	102 V to 130 V
230 V	205 V to 265 V
Power	6 VA Approx.
Frequency	48 to 60 Hz.
Fuse	100 mA fast blow on rear panel.

Environmental

Temperature

Operating	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Full specification over the range $5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$.
Storage	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Humidity	Max 95\% RH at $30^{\circ} \mathrm{C}$.
Mechanical	
Size	H105, W215, D305 mm
Weight	Approx. 1.7 kg . Approx. 2.6 kg with battery option.
Internal Battery (Option -03)	
Discharge Time	>8 hours. Typically, 10 hours for a fully charged battery.
Recharge Time	14 hours.
Battery Test	Pressing the Bat Chk push button displays the battery condition on the display. A reading of between 8 and 10 is required for normal operation.
Fuse	1A slow blow on rear panel.

